

Practice Algebra Test

Instructions:

- Read each problem carefully. Then work the problem on a separate sheet of paper and click on the box next to the correct choice. If you change your mind, just click on a different choice.
- Use the navigational buttons at the bottom of each page to go to the next or previous page.
- A calculator is not required for any questions on this test.
- This practice test consists of 25 problems. Click on "Begin Quiz", then begin.

2. Simplify:
$$-3 + 5[6 - 4(-2 - 7)]$$
 -147
 -36
 63

Back

207

3. Subtract $\frac{3}{4}$ from the product of -9 and $\frac{5}{36}$. -2

4. Company X's shipping rate is \$.35 for each of the first 5 ounces, and \$.10 for each additional ounce. What would it cost to ship a 12 ounce

package? \$1.05

\$1.20

\$2.45

\$3.00

5. Solve $\frac{3}{2}(8x-9)+\frac{5}{2}=13$

 $-\frac{11}{6}$ -1

6. $2^{-5} \cdot 64^{2/3} =$

512

1

7. Solve: $-7(2x-3) \le -5(3x-4)$

x < -1 x < 2

x < -2

x > 1

8. Solve: |2x-5|-1>2

x > -1 or x < 4

x > 1 or x < 4

x > 4 or x < 1

x > 4 or x < -1

Back

Doc ▶

9. Simplify, write answers with positive exponents: $\left(\frac{x^{-6}y^{-2}}{x^{-3}y^{-3}}\right)^{-1}$

$$: \left(\frac{x^{-0}y^{-2}}{x^{-3}y^{-3}}\right)$$

 $\frac{1}{x^3 v^5} \qquad \frac{x^3}{v}$

10. Simplify: $\left(\frac{7}{12}x^3 - \frac{2}{5}x^2 + \frac{8}{9}\right) - \left(\frac{7}{20}x^2 + \frac{1}{6}x - \frac{5}{18}\right)$ $\frac{7}{12}x^3 - \frac{3}{4}x^2 + \frac{1}{6}x + \frac{11}{18}$ $\frac{7}{12}x^3 - \frac{1}{20}x^2 + \frac{1}{6}x + \frac{11}{18}$ $\frac{7}{12}x^3 - \frac{1}{20}x^2 - \frac{1}{6}x + \frac{7}{6}$ $\frac{7}{12}x^3 - \frac{3}{4}x^2 - \frac{1}{6}x + \frac{7}{6}$

11. One of the factors of $10x^2 - x - 21$ is

$$2x + 3$$

$$5x + 7$$

$$5x + 3$$

$$10x - 1$$

12. What is the sum of the solutions of $x^3 - 4x = 0$?

$$-1$$

Back

▼ Doc

Doc ▶

13.
$$\frac{x^2 + 8x + 16}{x^2 - 3x - 28} = \frac{x - 4}{x + 4} \qquad \frac{x + 4}{x - 7} \qquad \frac{x + 8}{x - 3} \qquad \frac{x + 8}{x - 7}$$

14. Solve:
$$\frac{10}{a-8} = \frac{6}{a-2}$$

$$4 \qquad \frac{17}{4} \qquad -7 \qquad -2$$

15.
$$\sqrt{64x} + 3\sqrt{x} = \sqrt{73x}$$
 $4\sqrt{65x}$ $11\sqrt{x}$ $\sqrt{67x}$

16.
$$\frac{4x}{x^2 - 49} - \frac{2}{x + 7} = \frac{2}{x - 7} \qquad \frac{4x - 2}{x^2 - 49} \qquad \frac{1}{x + 7} \qquad \frac{1}{x - 7}$$

17. A student has 75 coins worth a total of \$10.65. Each coin is either a dime (10 cents) or a quarter (25 cents). If x is the number of dimes, then x can be determined from the equation

$$0.10x + 0.25(75 - x) = 10.65$$
 $\frac{x}{0.10} + \frac{75 - x}{0.25} = 10.65$

$$75x = 10.65 0.10 + 0.25(75 - x) = 10.65$$

18. What is the area, in square centimeters, of a rectangle with perimeter of 56 cm if the length is 4 cm less than three times the width?

76

104

132

160

19. $(-x^2y^{-3})(-2x^2y^4)^3 =$ $-2x^8y^9$ $8x^7y^4$

 $8x^{8}u^{9}$

 $8x^7y^{10}$

20. The slope of the line that goes through the points (-5,4) and (3,-12)is

4

21. Solve the equation $3x - 2 = 2(\frac{1}{2} - \frac{1}{3}x)$

 $x = -\frac{1}{11}$ $x = \frac{1}{9}$ $x = \frac{9}{11}$

 $x = \frac{9}{7}$

22. Find all solutions to the equation $3x^2 = 4x + 1$

4/3, 1/3 $\frac{2+\sqrt{7}}{2}, \frac{2-\sqrt{7}}{2}$ $\frac{4+3\sqrt{2}}{6}, \frac{4-3\sqrt{2}}{6}$ $\frac{2+\sqrt{2}}{2}, \frac{2-\sqrt{2}}{2}$

23. In the system of equations $\begin{cases} 2x - 3y = 3 \\ 4x + 2y = 2 \end{cases}$

$$y = -1/2$$
 $y = -1$ $y = -1/4$

$$y = -1$$

$$y = -1/4$$

$$y = 0$$

Back

Doc ▶

- **24.** If $4x = 1 + \sqrt{2x+1}$ then x =
- **25.** The sum of the x and y intercepts of the line that passes through the two points (-2,5) and (8,10) is

• Click on "End Quiz" to have the computer grade your test. Then click on "Correct My Answers" to see which questions you got wrong.

6

• Click on the green dots to see detailed solutions for each problem.

12

Back

◆ Doc **▶**

0

Solutions to Practice Algebra Test

Solution to Question 1: The solution is

Return

Solution to Question 2: -3 + 5[6 - 4(-2 - 7)] = -3 + 5[6 - 4(-9)] =-3 + 5[6 + 36] = -3 + 5(42) = -3 + 210 = 207Return

Solution to Question 3: $(-9) \cdot \left(\frac{5}{36}\right) = -\frac{5}{4}$, so $-\frac{5}{4} - \frac{3}{4} = -\frac{8}{4} = -2$.

Return

Solution to Question 4: The first 5 ounces cost (.35)(5) = 1.75. The next 12-5 = 7 ounces cost (.10)(7) = 0.70, so the total cost is 1.75+0.70 = \$2.45. Return

Solution to Question 5: Multiplying both sides of the equation $\frac{3}{2}(8x 9) + \frac{5}{2} = 13$ by 2 we obtain

$$3(8x-9)+5 = 26 \Rightarrow 24x-27+5=26$$

 $\Rightarrow 24x-22=26$
 $\Rightarrow 24x=48$
 $\Rightarrow x=2$

Return

Solution to Question 6: $2^{-5} = \frac{1}{2^5} = \frac{1}{32}$ and $64^{2/3} = (\sqrt[3]{64})^2 = (4)^2 = 16$, so $2^{-5} \cdot 64^{2/3} = \frac{1}{32} \cdot 16 = \frac{16}{32} = \frac{1}{2}$. Return

Solution to Question 7:

$$-7(2x-3) \leq -5(3x-4)$$

$$\Rightarrow -14x+21 \leq -15x+20$$

$$\Rightarrow x \leq -1$$

Return

Solution to Question 8:

$$\begin{aligned} |2x-5|-1 &>& 2\\ &\Rightarrow& |2x-5|>3\\ &\Rightarrow& 2x-5>3 \text{ or } 2x-5<-3\\ &\Rightarrow& 2x>8 \text{ or } 2x<2\\ &\Rightarrow& x>4 \text{ or } x<1 \end{aligned}$$

Return

Solution to Question 9: $\frac{x^{-6}y^{-2}}{x^{-3}y^{-3}} = \frac{y}{x^6y^2} = \frac{y}{x^3}$ so $\left(\frac{x^{-6}y^{-2}}{x^{-3}y^{-3}}\right)^{-1} = \frac{x^3}{y}$.

Solution to Question 10:

$$\left(\frac{7}{12}x^3 - \frac{2}{5}x^2 + \frac{8}{9}\right) - \left(\frac{7}{20}x^2 + \frac{1}{6}x - \frac{5}{18}\right)
= \frac{7}{12}x^3 + \left(-\frac{2}{5} - \frac{7}{20}\right)x^2 - \frac{1}{6}x + \left(\frac{8}{9} + \frac{5}{18}\right)
= \frac{7}{12}x^3 + \left(-\frac{8}{20} - \frac{7}{20}\right)x^2 - \frac{1}{6}x + \left(\frac{16}{18} + \frac{5}{18}\right)
= \frac{7}{12}x^3 + \left(-\frac{15}{20}\right)x^2 - \frac{1}{6}x + \frac{21}{18}
= \frac{7}{12}x^3 - \frac{3}{4}x^2 - \frac{1}{6}x + \frac{7}{6}$$

Return

Solution to Question 11: $10x^2 - x - 21 = (2x - 3)(5x + 7)$

Return

Solution to Question 12: $x^3 - 4x = x(x^2 - 4) = x(x - 2)(x + 2)$ so the solutions are x = 0, 2, -2 and so the sum is 0. Return

Solution to Question 13:

$$\frac{x^2 + 8x + 16}{x^2 - 3x - 28} = \frac{(x+4)(x+4)}{(x-7)(x+4)} = \frac{x+4}{x-7}$$

Return

Solution to Question 14: Cross-multiplying we have

$$10(a-2) = 6(a-8)$$

 $\Rightarrow 10a - 20 = 6a - 48$
 $\Rightarrow 4x = -28 \Rightarrow 4a = -28$
 $\Rightarrow a = -7$

Return

Solution to Question 15:

$$\sqrt{64x} + 3\sqrt{x} = 8\sqrt{x} + 3\sqrt{x} = 11\sqrt{x}$$

Return

Solution to Question 16: A common denominator is $x^2 - 49$. Then

$$\frac{2}{x+7} = \frac{2}{x+7} \cdot \frac{x-7}{x-7} = \frac{2(x-7)}{x^2-49} = \frac{2x-14}{x^2-49}$$
. So

$$\frac{4x}{x^2 - 49} - \frac{2}{x+7} = \frac{4x}{x^2 - 49} - \frac{2x - 14}{x^2 - 49}$$

$$= \frac{4x - (2x - 14)}{x^2 - 49}$$

$$= \frac{4x - 2x + 14}{x^2 - 49}$$

$$= \frac{2x + 14}{x^2 - 49}$$

$$= \frac{2(x+7)}{(x+7)(x-7)}$$

$$= \frac{2}{x-7}$$

Return

Solution to Question 17: If x is the number of dimes, that .10x is their worth. Since there are 75 coins altogether, the number of quarters must be 75 - x and their worth is .25(75 - x). Hence the total worth of the coins is .10x + .25(75 - x) and this must equal 10.65. Return

Solution to Question 18: Let *l* and *w* be the length and width of the rectangle. Then l = 3w - 4 and 2l + 2w = 56. So l + w = 28 and so $3w-4=l=28-w\Rightarrow 4w=32\Rightarrow w=8$ and so l=20. So the area of the rectangle is $l \cdot w = (20)(8) = 160$ square centimeters. Return

Solution to Question 19: $(-x^2y^{-3})(-2x^2y^4)^3 = (-x^2y^{-3})(-8x^6y^{12}) =$ $8x^{8}y^{9}$. Return

Solution to Question 20: The slope is

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{-12 - 4}{3 - (-5)} = \frac{-16}{8} = -2$$

Return

Solution to Question 21: Multiplying both sides of the equation by 6 we have $18x - 12 = 2(3 - 2x) = 6 - 4x \Rightarrow 22x = 18 \Rightarrow x = \frac{18}{22} = \frac{9}{11}$.

Solution to Question 22: We use the quadratic formula to solve the equation $3x^2 - 4x - 1 = 0$ with a = 3, b = -4, and c = -1. So

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{4 \pm \sqrt{16 + 12}}{6} = \frac{4 \pm \sqrt{28}}{6} = \frac{4 \pm 2\sqrt{7}}{6} = \frac{2 \pm \sqrt{7}}{3}$$

So the solutions are $\frac{2+\sqrt{7}}{3}$ and $\frac{2-\sqrt{7}}{3}$.

Return

Back

▼ Doc

Solution to Question 23: If we multiply the first equation by -2 we obtain -4x + 6y = -6. Then adding this equation to the second equation 4x + 2y = 2 we obtain 8y = -4 or $y = -\frac{1}{2}$. Return

Solution to Question 24: If we square both sides of the equation 4x-1= $\sqrt{2x+1}$ we find that $16x^2 - 8x + 1 = 2x + 1 \Rightarrow 16x^2 - 10x = 0 = 0$ $2x(8x-5) \Rightarrow x=0 \text{ or } x=\frac{5}{8}$. We see that x=0 is not a solution since $0 \neq 2$, so the only solution is $x = \frac{5}{8}$. Return

Solution to Question 25: The slope of this line is $\frac{10-5}{8+2} = \frac{5}{10} = \frac{1}{2}$. The equation of the line then is $y = \frac{1}{2}x + b$. If we plug in one of the points, say x = -2 and y = 5, we have $5 = \frac{1}{2}(-2) + b = -1 + b \Rightarrow b = 6$. So the equation of this line is $y = \frac{1}{2}x + 6$. If x = 0 then y = 6 (the y intercept). If y = 0 then $0 = \frac{1}{2}x + 6 \Rightarrow -6 = \frac{1}{2}x \Rightarrow x = -12$ (the x intercept). Hence the sum of the two intercepts is 6 - 12 = -6.